

TM-1256 1733.080 1760.000

CONSECUTIVE QUENCHES AND THE SAFETY LEADS

M. Kuchnir

Consecutive Quenches and the Safety Leads

M. Kuchnir

April 30, 1984

The safety leads of the Energy Saver were designed to handle occasional quenches. In order to save capital investment in another system of plumbing they involve no gas cooling. In their design optimisation was sought on the ratio of load capability (for a single quench) to steady state heat leak into the liquid helium environment. Reference 1, describes the design considerations and tests on a prototype made out of constanta. The actual production models are made out of 304 Stainless Steel rods 13/16" diameter by 48.66" long² wrapped in Kapton film for electrical insulation.

Here the behaviour of production models relevant for consecutive quenches is analysed. The quenches are characterized by current pulses of the shape

$$I(t) = I_0 e^{-t/12}$$
.

Since the time constant of 12. seconds is much smaller than the cooling time for recovery, the adiabatic approximation for the temperature increase in an element of length dx of the lead during a quench is accurately given by the energy balance equation:

$$\mu s c(T) dT = \rho(T) s^{-1} I(t)^2 dt$$

where:

 $\mu = 7.86 \text{ g/cm}^3$ is the density of stainless steel³

$$s = \frac{\pi}{4} (13/16)^2 \text{ in}^2 = 3.345 \text{ cm}^2 \text{ is the cross section}$$

c(T) is the specific heat of stainless steel $^{\mu}$ (J/g.K)

 $\rho(T)$ is the electrical resistivity of stainless steel 5 ($\Omega.cm$)

T is the temperature of the element (K)

t is time (s)

rearranging and integrating:

$$\mu \ s^2 \int_{T_{before}}^{T_{after}} c(T)/\rho(T) \ dT = \int_{0}^{\infty} I_{o}^2 e^{-2t/12} \cdot dt = 6.I_{o}^{2}$$

The right hand side of the equations is usually refered to as the number of Miits ($10^6~\text{A}^2.\text{s}$ or $J/\mu\Omega$) forced into the lead. Based on quench data, P. Martin has suggested a reduction of the value 6 I $_0^2$ to 5.6 I $_0^2$ in order to account for the initial deposition of energy in the magnet.

Figure 1 is a calculation of the integral

$$\mu s^2 \int_0^T c(T)/\rho(T) dT$$
 $J/\mu\Omega$

and it allow us to find out the temperature excursion of an element of length given its initial temperature and the intensity of the quench either in $J/\mu\Omega$ (Miits) or the initial current using the scale on the right margin. This scale has not been corrected for the 5.6/6.0 factor in the number of Miits. The same Figure 1 allows us to evaluate the maximum current allowable if the temperature of the hottest spot in the lead is known and the maximum safe value (600. K for the integrity of the Kapton film) is stipulated. Since the electrical resistance of the lead can be estimated from quench data 0 , it is useful to have a calculated limit for the temperature of the hottest spot in the lead as a function of the electrical resistance. This is given in Figure 2. The calculation leading to this graph is explained further on.

The temperature profile of the lead is a very slow function of time between quenches as well as during warm up and cool down of the Energy Saver, since it is cooled only by conduction to its extremities. The superinsulation reduces infrared radiation to a negligible effect. We therefore neglect this effect.

In order to calculate the change of the temperature profile with time, we set up the following finite element difference equation for the energy flow:

$$Q(n,n-1) - Q(n+1,n) = h(n) \cdot (T_n(t+dt)-T_n(t)) / dt$$

where:

Q(n,n-1) = heat conducted from element n to element n-1

Q(n+1,n) = heat conducted from element n+1 into element n

 $h(n) = \mu \text{ s dx } c(T_n) = \text{change in heat capacity of element n during dt}$

Let $\kappa(T_{n,n-1})$ be the thermal conductivity of stainless steel (w/cm.K) at the temperature $T_{n,n-1}=(T_n+T_{n-1})/2$ between elements n and n-1, then

$$Q(n,n-1) = s \cdot \kappa(T_{n,n-1}) \cdot (T_n - T_{n-1}) / dx$$

$$Q(n+1,n) = s \cdot \kappa(T_{n+1,n}) \cdot (T_{n+1} - T_n) / dx$$

For boundary conditions we impose T_1 =4.6 K and T_{62} =298. K, the length of the lead being divided in 62 elements, each 2.0 cm long (dx=2. cm). The initial condition T_n =300. K for n=2, 3,..., 61 at t=0 would be typical for the cooldown problem. The above expressions permit

the calculation of the temperature profile at time t=dt, and by repetition at any multiple of dt which was chosen to be dt=6.0 s. Figure 3 shows this condition as it evolves into the steady state profile. It is interesting to note that although thermal diffusivity is the relevant property in this heat propagation problem, its use leads to an erroneous linear temperature profile for the steady state condition. One has to handle separately, as we did above, the thermal conductivity and the specific heat for a proper simulation.

A public fortran program, QCHWAIT/UN=92532, in the Cyber was written to carry out the simulation. It uses approximately 1 minute of cpu time to simulate 10 hours of lead behaviour. This program is presented in Appendix 1. The output of this program for the quenches observed on April 9-10, 1984 is plotted in Figure 4. The development of the steady state temperature profile for a safety lead initially at room temperature presented in Figure 3 was also obtained with this program. The printing is done on intervals of approximately 15 minutes, it includes the time (decimal hours), the highest temperature (K) in the profile, the distance from the cold end (cm) at which it occurs and a series of temperatures (K) corresponding to positions separated by In the process of developing this program, we compiled in another program QCHWTST/UN=92532 the following properties of stainless thermal difusivity, specific heat, electrical resistivity, thermal conductivity, quench capability and inverse quench capability.

By using the electrical resistivity and the temperature profile at print out time, QCHWAIT or its later version calculates the total resistance

$$R = \sum_{n=1}^{62} \rho(T_n) s^{-1} dx$$

Plotting this total resistance as a function of the hottest point temperature for the three quenches of April 9, 1984 and several other quenches (2.0 kA, 3.0 kA, 3.5 kA and 7.7 kA) starting from steady state condition we obtain Figure 2. An envelope curve can be drawn in it. This curve is the temperature of the hottest spot possible for the given resistance. If the resistance of the safety lead can be measured in place, remotely, with a phase-locked-ac-milliohmeter for instance, or calculated from quench data this curve might be very useful as mentioned above in the first reference to Figure 2.

A plot of the temperature of the hottest spot as a function of time is presented in Figure 5. It includes the three quenches of Figure 4 starting with a delay of 4 hours and several other quenches starting from the steady state condition. It provides us with examples for estimating cooling or waiting times.

Due mostly to time limitation, this work is presented leaving a few rough edges. The following list is written while things that could be improved, expanded and polished are fresh in mind. It is a "to do" list in no particular order, if upgrading this work becomes a justifiable effort.

1. Figure 1 was calculated by hand not using the stainless steel

data functions that now are in the program, it might deviate a little from the values that these might generate for it.

- 2. Modify QCHWAIT for convenience and user friendliness to the accelerator operators, as well as, presenting the results in plots instead of tables.
- 3. Verify the performance of QCHWAIT with different values of dx and dt. The values chosen satisfy the thermodynamic principles condition

$dx^2/2dt \langle \kappa/\mu c$

- at all temperatures. The calculations show good convergence and reasonable answers passing several tests. But, it is probably not the optimum compromise between simulation speed and detail.
- 4. Measure the electrical resistance of several safety leads and compare them with the calculated values shown in Figure 2.
- 5. Instrument a safety lead with thermometers and experimentally verify the results of this work.
- 6. Simulate the "bleeding gas fix" that was implemented in the few critical spool pieces for speedier cooling off.

REFERENCES

- 1. M.Kuchnir and T.H.Nicol Safety Leads Advances in Cryogenic Engineering 25, 294-299, (1980).
- 2. Fermilab drawing No. 1620-MD-124599
- 3. Materials at Low Temperatures Richard P. Reed and Alan F. Clark editors, American Society for Metals, Metals Park, Ohio 44073 (1983) p.377
- 4. Ibid p. 66
- 5. Ibid p. 164
- 6. Philip S. Martin, Private communication
- 7. Reference 3, p. 135

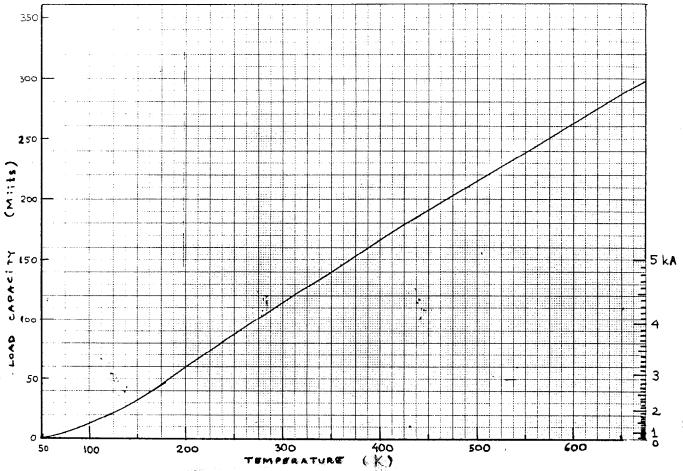


Figure 1. Load Capacity (Miits) for a Safety Lead

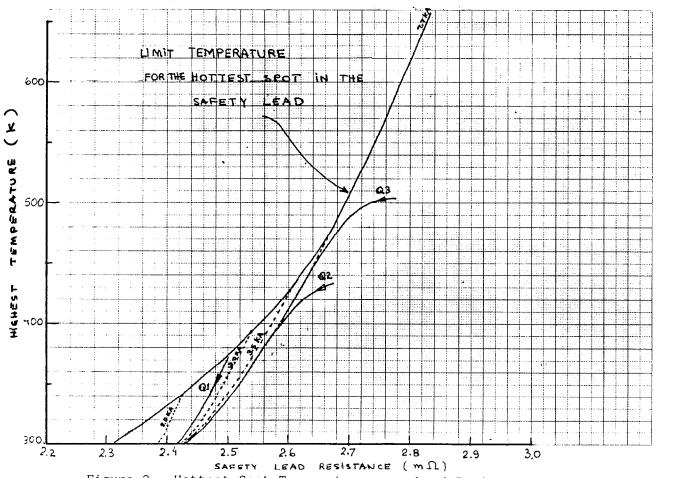


Figure 2. Hottest Spot Temperature vs. Lead Resistance

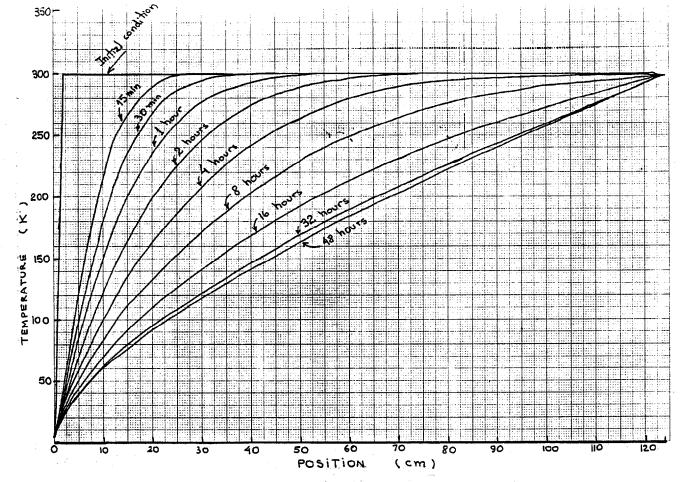


Figure 3. Temperature Profiles During Cooldown

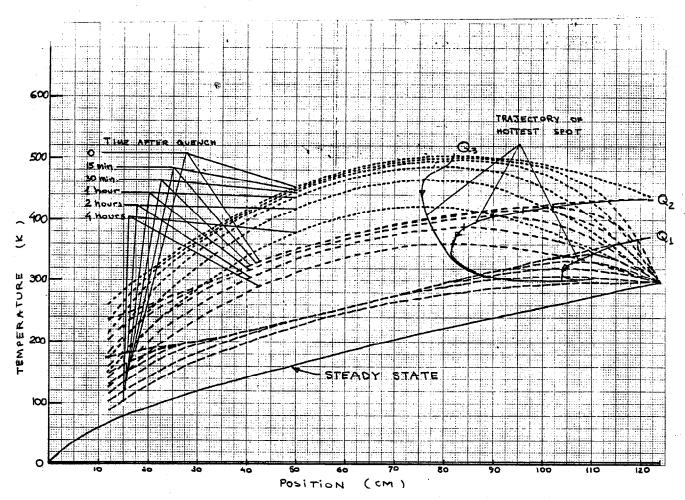


Figure 4. Temperature Profiles for April 9, 1984 Quenches

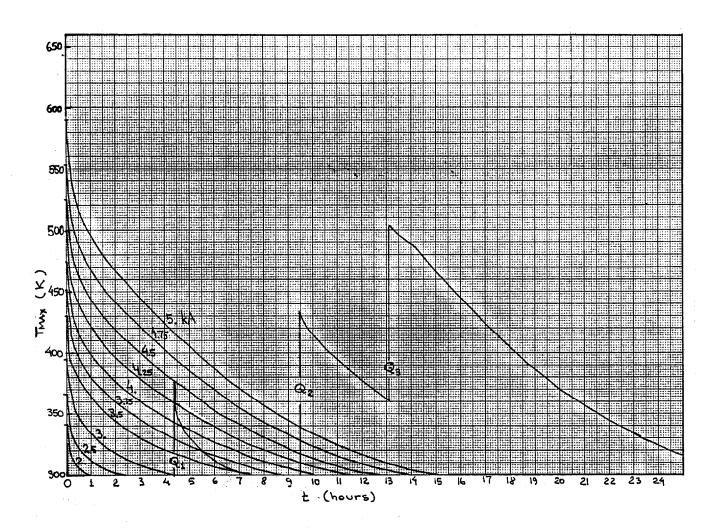


Figure 5. Cooling of Hottest Spots for Several Quenches

Appendix 1

Simulation Program

```
00001
            PROGRAM QCHWAIT (INPUT, OUTPUT, HISTO, DET, TAPE1=HISTO, TAPE2=DET)
00002 C
                             THIS PROGRAM SIMMULATES THE TIME DEPENDENCE OF
00003 C
            THE TEMPERATURE PROFILE OF AN ENERGY-SAVER SAFETY LEAD.840413
00004 C
00005
            DIMENSION T(62,150), TSS(62), QTIME(5), QCURR(5)
00006
            DX=2.
00007
            DT=6.
80000
            S=3.345
00009
            R = 7.86
            DD=DT/(DX*DX*R)
00010
00011 C
            SAMPLE HISTORY:
            ACTIME=4.0
00012
            DATA QTIME/ 4.38, 9.45, 13.1, 34.6, 110./
00013
00014
            DATA QCURR/ 2720.,3552.,3552.,2800.,-1./
00015
            NQ=1
00016 C
            QUENCH OF CONCERN:
00017
            AIMAX=4000.
            QMAX=5.6E-6*AIMAX*AIMAX
00018
00019
            QM=FUNC1(300.)+QMAX
00020
            TMAX=FUNC2(QM)
00021 C
            STEADY STATE PROFILE:
00022
            DATA TSS/ 4.6,33.,43.,52.,60.,67.,74.,80.,86.,91.,
00023
           1 97.,102.,107.,112.,117.,122.,126.,131.,136.,140.,
00024
           2145.,149.,153.,158.,162.,166.,170.,174.,179.,182.,
           3186.,190.,194.,198.,202.,206.,209.,213.,216.,220.,
00025
           4224.,227.,231.,234.,238.,242.,245.,249.,252.,256.,
00026
           5259.,263.,266.,270.,273.,277.,280.,284.,287.,291.,
00027
           6294..298./
00028
            WRITE(1,51)
00029
00030
            PRINT 51
        51 FORMAT(" TIME HR
00031
                                TMAX
                                                 R MOHMS T 12
                                         LMAX
                                                                  T 22
                                                                          T 32
                              T 62
                                       T 72
                                               T 82
                                                                T102 T112
00032
           1 T 42
                      T 52
                                                        T 92
00033
           2122")
00034 C
            SET INITIAL PROFILE TO STEADY STATE
00035
            DO 1 I=1,62
            T(I,1)=TSS(I)
00036
            CONTINUE
00037
         1
00038 C
            HISTORY HANDLER
00039
            IF(QTIME(NQ) - .25 - ACTIME) 10,10,11
00040
        11
            N = 150
00041
            IFQ=0
            GOTO 2
00042
00043
        10
            N=3600.*(QTIME(NQ)-ACTIME)/DT
00044
            IFQ=1
00045
            IF(N.GT.150) PRINT 12
00046
            FORMAT( "N>150")
00047
            IF(QCURR(NQ).LE.O) STOP
00048
            GOTO 2
00049 C
00050 C
            FINITE ELEMENT ITERATION
```

```
00051
         2 DO 3 J=2.N
00052
            T(1,J)=4.6
00053
            T(62,J)=298.
00054
            DO 4 I=2,61
00055
            T1=(T(I-1,J-1)+T(I,J-1))/2.
00056
            DT1=T(I-1,J-1)-T(I,J-1)
00057
            T2=(T(I+1,J-1)+T(I,J-1))/2.
00058
            DT2=T(I+1,J-1)-T(I,J-1)
00059 C
            WRITE(2,54) I,J,T1,DT1,T2,DT2
00060 C 54
            FORMAT (214,4F10.1)
            C2=DD*COND(T2)/SPEC(T(I,J-1))
00061
00062
            C1 = DD * COND(T1) / SPEC(T(I,J-1))
            T(I,J)=T(I,J-1) + C1 * DT1 + C2 * DT2
00063
         4 CONTINUE
00064
            TD=J-1
00065
00066
            L=J
00067
         3 CONTINUE
00068
            ACTIME=ACTIME+(TD*DT/3600.)
00069
            TMAX=0
00070
            R=0
00071
            D0 5 I=1,62
            T(I,1)=T(I,L)
00072
00073
            R=R+DX*RESIS(T(I,L))/S
00074
            IF(TMAX.LE.T(I,L)) TMAX=T(I,L)
00075
            IF(TMAX.LE.T(I,L)) HMAX=H*DX
00076
00077
           CONTINUE
            WRITE(1.50) ACTIME.TMAX.HMAX.R.T(6.1).T(11.1).T(16.1).
00078
00079
           1T(21,1),T(26,1),T(31,1),T(36,1),T(41,1),T(46,1),T(51,1),
00080
           2T(56,1),T(61,1)
00081
        50 FORMAT(F8.2,2F8.0,F8.3,12F8.0)
00082
            PRINT 52, ACTIME, TMAX, HMAX, R, T(6,1), T(11,1), T(16,1)
00083
            IF (IFQ.EQ.O) GOTO 71
00084 C
00085 C
            EXECUTE QUENCH:
00086
            QI=5.6E-6*QCURR(NQ)*QCURR(NQ)
00087
            WRITE(1,53) QTIME(NQ),QCURR(NQ),QI
00088
        53 FORMAT(F8.2," QUENCH WITH IO=",F6.0,"A ===>",F6.1," MIITS")
00089
            TMAX=0
00090
            R=0
00091
            DO 7 K=1,62
00092
            QE=FUNC1(T(K,1))+QI
00093
            T(K,1)=FUNC2(QE)
            R=R+DX*RESIS(T(K,1))/S
00094
00095
00096
            IF(TMAX.LE.T(K,1)) TMAX=T(K,1)
00097
            IF(TMAX.LE.T(K,1)) HMAX=H*DX
00098
         7 CONTINUE
00099
            WRITE(1,50) ACTIME, TMAX, HMAX, R, T((6,1), T((11,1), T((16,1),
           1T(21,1),T(26,1),T(31,1),T(36,1),T(41,1),T(46,1),T(51,1),
00100
00101
           2T(56,1),T(61,1)
            PRINT 52, ACTIME, TMAX, HMAX, R, T(6,1), T(11,1), T(16,1)
00102
        52 FORMAT(F8.2,2F8.0,F8.3,3F8.0)
00103
00104
            NQ=NQ+1
```

```
00105 C
            EXAMINE MAXIMUM TEMPERATURE
00106
            QE=FUNC1(TMAX)+QMAX
00107
            TFUT=FUNC2(QE)
00108
            IF(TFUT.GE.650) WRITE(1,8) AIMAX, TFUT, HMAX
00109
            FORMAT(8X,"A ",F5.0,"A QUENCH WILL GENERATE ",F4.0,"K AT ",
00110
           1F5.0."CM")
00111 C
            EXAMINE MAXIMUM ALLOWABLE QUENCH
00112
            QA=FUNC1(650.)~FUNC1(TMAX)
00113
            IF(QA) 60,60,62
00114
        60
            WRITE(1,64)
            FORMAT(7X," EXCEEDED MAXIMUM ALLOWABLE QUENCH ")
00115
00116
            GOTO 71
00117
        62
            CUR2=QA/5.6E-6
00118
            CUR=SQRT(CUR2)
00119
            WRITE(1,66) CUR
00120
            FORMAT(7X," MAXIMUM ALLOWABLE QUENCH CURRENT NOW:", F6.0,"A .")
00121
            GOTO 71
00122
            END
00123 C
00124 C
00125
            FUNCTION FUNC1(T)
00126 C
                      QUENCH CAPACITY AS FUNCTION OF TEMPERATURE
                                                                      MIITS
00127
            IF(T.LE.400.) GOTO 31
00128
            FUNC1=-22.5556+.475556*T
00129
            GOTO 37
00130
        31
            IF(T.LE.275.) GOTO 32
00131
            FUNC1=-42.2222+.522222*T
00132
            GOTO 37
        32
            IF(T.LE.200.) GOTO 33
00133
00134
            FUNC1 = -52.5 + .56 * T
00135
            GOTO 37
00136
            IF(T.LE.96.) GOTO 34
        33
            FUNC1=.736963E-3*T**2.13255
00137
00138
            GOTO 37
            IF(T.LE.4.6) GOTO 35
00139
00140
            FUNC1=1.16459E-6*T**3.54396
00141
            GOTO 37
00142
            PRINT 36
        35
            FORMAT("T<4.6 FUNC1 TRAP")
00143
        36
00144
            FUNC1=0.
00145
        37
            RETURN
00146
            END
00147 C
00148
            FUNCTION FUNC2(X)
00149 C
                      TEMPERATURE INCREMENT DUE TO QUENCH LOAD
                                                                      K
            IF(X.LE.168.) GOTO 41
00150
            FUNC2=(X+22.5556)/.475556
00151
00152
            GOTO 47
            IF(X.LE.102.) GOTO 42
        41
00153
            FUNC2=(X+42.2222)/.522222
00154
            GOTO 47
00155
00156
        42 IF(X.LE.60.) GOTO 43
00157
            FUNC2=(X+52.5)/.56
            GOTO 47
00158
```

```
00159
        43 IF(X.LE.10.) GOTO 44
00160
            FUNC2=(X/.736963E-3)**.468922
00161
            GOTO 47
00162
        44
            IF(X.LE..00026) GOTO 45
00163
            FUNC2=(X/1.16459E-6)**.282170
00164
            GOTO 47
        45
00165
            PRINT 46
00166
        46
            FORMAT("X<.00026 -FUNC2 TRAP")
00167
            FUNC2=0.
00168
        47
            RETURN
00169
            END
00170 C
            FUNCTION SPEC(T)
00171
00172 C
                      SPECIFIC HEAT OF STAINLESS STEEL
                                                         J/GK
00173
            IF(T.LE.600.) GOTO 81
00174
            SPEC = .49
            GOTO 89
00175
            IF(T.LE.300.) GOTO 82
        81
00176
00177
            SPEC = .22081519 * T ** .12285675
00178
            GOTO 89
           IF(T.LE.200.) GOTO 83
00179
        82
00180
            SPEC = .085829531 * T ** .29048871
            GOTO 89
00181
00182
        83
            IF(T.LE.100.) GOTO 84
            SPEC = 4.1440952E-3 * T ** .86249648
00183
00184
            GOTO 89
00185
        84
            IF(T.LE.63.) GOTO 85
            SPEC = 85.005947E-6 * T ** 1.7064867
00186
00187
            GOTO 89
            IF(T.LE.35.) GOTO 86
00188
        85
00189
            SPEC = 1.6692594E-6 * T ** 2.6551262
            GOTO 89
00190
            IF(T.LE.4.2) GOTO 87
00191
        86
            SPEC = 478.40362E \div 6 * T ** 1.06370
00192
00193
            GOTO 89
        87
00194
            PRINT 88
            FORMAT (" T<4.2 =-> SPEC = 1.E-6")
00195
00196
            SPEC = 1.E-6
            RETURN
00197
        89
00198
            END
00199 C
            FUNCTION COND(T)
00200
00201 C
                      THERMAL CONDUCTIVITY OF STAINLESS STEEL W/CM.K
            IF(T.LE.300.) GOTO 92
00202
00203
            COND = 44.707195E-3 * T ** .21222774
00204
            GOTO 99
            IF(T.LE.200.) GOTO 93
00205
        92
            COND = .020037364 * T ** .3529301
00206
            GOTO 99
00207
00208
        93
            IF(T.LE.100.) GOTO 94
            COND = 11.822224E - 3 * T ** .4525122
00209
00210
            GOTO 99
        94
            IF(T.LE.60.) GOTO 95
00211
            COND = 4.6622033E-3 * T ** .6545662
00212
```

```
00213
            GOTO 99
00214
        95 IF(T.LE.40.) GOTO 96
00215
            COND = 1.6319045E-3 * T ** .9109541
00216
            GOTO 99
00217
        96
            IF(T.LE.20.) GOTO 97
00218
            COND = 435.29606E-6 * T ** 1.2691866
00219
            GOTO 99
00220
        97
            IF(T.LE.4.2) GOTO 98
00221
            COND = 394.94084E-6 * T ** 1.301663
00222
            GOTO 99
00223
        98
           PRINT 100
            FORMAT (" T<4.2 --> COND=1.E-4")
00224
       100
00225
            COND=1.E-4
00226
        99
            RETURN
00227
            END
00228 C
00229
            FUNCTION RESIS(T)
00230 C
                     RESISTIVITY OF STAINLESS STEEL
                                                         1.E-3*OHMS*CM
            IF(T.LE.148.) GOTO 75
00231
            RESIS = .020581593 * T ** .21410886
00232
00233
            GOTO 79
            IF(T.LE.80.) GOTO 76
00234
        75
            RESIS = .020916588 * T ** .21087798
00235
            GOTO 79
00236
00237
        76 IF(T.LE.40.) GOTO 77
00238
            RESIS = .035922037 * T ** .087462841
00239
            GOTO 79
        77 RESIS=.0496
00240
00241
            IF (T.LT.4.2) PRINT 78
00242
        78
            FORMAT ("T<4.2 IN RESIS")
00243
        79
           RETURN
00244
            END
00244
            END
```